英特尔发布大型神经拟态系统Hala Point,神经元数量达11.5亿
4月18日,英特尔发布了代号为Hala Point的大型神经拟态系统。该系统基于英特尔Loihi 2神经拟态处理器打造而成,旨在支持类脑AI领域的前沿研究,解决AI目前在效率和可持续性等方面的挑战。
据介绍,Hala Point神经元数量达到11.5亿,在英特尔第一代大规模研究系统Pohoiki Springs的基础上,Hala Point改进了架构,将神经元容量提高了10倍以上,性能提高了12倍。
Loihi 2处理器早在2021年就已发布,首发采用Intel 4工艺,集成230亿个晶体管、六个低功耗x86核心、128个神经形态核心,单颗就有100万个神经元、1.2亿个突触,是上代规模的8倍,性能也提升了10倍。
Loihi 2应用了众多类脑计算原理,如异步、基于事件的脉冲神经网络(SNN)、存算一体不断变化的稀疏连接,而且神经元之间能够直接通信,不需要绕过内存。
尤其是在新兴的小规模边缘工作负载上,它实现了效率、速度和适应性数量级的提升。
比如执行AI推理负载和处理优化问题时, Loihi 2的速度比常规CPU和GPU架构快多达50倍,能耗则只有百分之一。
Hala Point在主流AI工作负载上的计算效率非常出色,比如运行传统深度神经网络时,每秒可完成多达2万万亿次运算(20PFlops),8位运算的能效比达到了15TOPS/W(每瓦特15万亿次计算),相当于甚至超过了基于GPU、CPU的架构。
在用于仿生脉冲神经网络模型时,Hala Point能够以比人脑快20倍的实时速度,运行其全部11.5亿个神经元。
尤其是在运行神经元数量较低的情况下,它的速度甚至可比人脑快200倍!
英特尔方面表示:“目前,AI模型的算力成本正在持续上升。行业需要能够规模化的全新计算方法。为此,英特尔开发了Hala Point,将高效率的深度学习和新颖的类脑持续学习、优化能力结合起来。我们希望使用Hala Point的研究能够在大规模AI技术的效率和适应性上取得突破。”
Hala Point系统有望推动多领域AI应用的实时持续学习,比如科学研究、工程、物流、智能城市基础设施管理、大语言模型、AI助手等等。
本站部分文章来自互联网,文章版权归原作者所有。如有疑问请联系QQ:362580117!