人类反超 AI:DeepMind 用 AI 打破矩阵乘法计算速度 50 年记录一周后,数学家再次刷新

访客12个月前AI生活78

10 月 5 日,AlphaTensor 横空出世,DeepMind 宣布其解决了数学领域 50 年来一个悬而未决的数学算法问题,即矩阵乘法。AlphaTensor 成为首个用于为矩阵乘法等数学问题发现新颖、高效且可证明正确的算法的 AI 系统。论文《Discovering faster matrix multiplication algorithms with reinforcement learning》也登上了 Nature 封面。

然而,AlphaTensor 的记录仅保持了一周,便被人类数学家打破了。

来自奥地利林茨约翰·开普勒大学的研究人员 Manuel Kauers 和 Jakob Moosbauer 在其最新工作中表示,他们已经打破 AlphaTensor 的矩阵乘法记录。他们开发了一种以 95 步执行 5×5 矩阵乘法的方法,比 AlphaTensor 的 96 步记录少了一步,此前的记录为 98 步。论文预印版于 10 月 13 日发布在 arxiv 上。

人类反超 AI:DeepMind 用 AI 打破矩阵乘法计算速度 50 年记录一周后,数学家再次刷新
论文地址:https://arxiv.org/abs/2210.04045

论文标题中的 “FBHHRBNRSSSHK”其实就是 DeepMind 论文所有作者姓氏的首字母组合,这种命名方式也是很有趣了:

人类反超 AI:DeepMind 用 AI 打破矩阵乘法计算速度 50 年记录一周后,数学家再次刷新

数学问题的探索永无止境,如作者所说,DeepMind 算法方案 “still not the end of the story”。不过,他们这次的突破是站在巨人也就是 AI 的肩膀上,作者表示,其解决方案是在 DeepMind 方案的基础上应用一系列的转换,从而消除了一步乘法计算。

1
前进 2 步的 AlphaTensor

我们先来简要回顾一下 AlphaTensor 的成绩。

计算机科学中许多数学任务都是通过矩阵乘法来处理的,例如机器学习、计算机图形的创建,各种模拟或数据压缩。而计算机计算乘法的速度要远远慢于加法,因此,即使矩阵乘法的效率提升得很小,也会产生巨大影响,几十年来,数学家们一直在寻找更有效的矩阵乘法算法。

1969 年,德国数学家 Volker Strassen 开发了一种算法,首次将 4×4 矩阵乘法的求解从 64 步减少到 49 步,震动了数学界。

而 Deepmind 这次发布的 AI 系统 AlphaTensor,发现了一种比 Strassen 算法更快的新算法。Demis Hassabis 称,新算法具备在每天数万亿次计算中将效率提高 10% ~ 20% 的潜力。

AlphaTensor 是一次从游戏到数学的飞跃,它基于 2018 年 Deepmind 发布的通用棋盘游戏 AI 系统 AlphaZero。为了训练 AlphaTensor,Deepmind 研究团队将矩阵乘法问题转化成一种 3D 棋盘游戏,每一步都会产生新算法的构建块。AlphaTensor 每次会在数万次移动中进行选择,以尽可能少的步骤生成新算法而获得奖励。Deepmind 将其称为“张量游戏”。

在 5×5 的输入矩阵中,AlphaTensor 独立发现了 Strassen 算法和其他已知的算法。并且,它还开发了比旧算法更有效的新算法。

例如,5×5 矩阵乘法(n=4)以前要计算 80 步,而 AlphaTensor 新算法只需 76 步;当n=5 时,AlphaTensor 将求解从原来的 98 步减少到 96 步。4×4 矩阵乘法由 Strassen 减少到 49 步,AlphaTensor 则将其优化到 47 步。这样的效率是由 AlphaTensor 生成的 70 多个矩阵乘法的算法实现的。

人类反超 AI:DeepMind 用 AI 打破矩阵乘法计算速度 50 年记录一周后,数学家再次刷新

人类反超 AI:DeepMind 用 AI 打破矩阵乘法计算速度 50 年记录一周后,数学家再次刷新

图注:AlphaTensor 发现的算法复杂性与已知矩阵乘法算法比较

此外,AlphaTensor 还可开发特定硬件的算法,用于机器学习。据说目前运行速度比谷歌 TPU 和英伟达 V100 上的算法快 20%。

自主调整乘法算法以适应硬件的方法对人类来说很困难,所以 AlphaTensor 对 Strassen 算法的改进创造了 4×4 矩阵乘法的新上限,是 AI 进步为其他学科提供助力的一大证明。它也表明,原本为传统游戏开发的 AlphaZero 系统可以解决领域之外的数学问题。

2
人类再向前 1 步

在 Manuel Kauers 和 Jakob Moosbauer 的最新研究中,他们主要有两个新发现,一是对于 4×4 矩阵,他们提出了另一种 47 步乘法的求解算法,但不同于先前的解决方案;二是对于 5×5 矩阵,他们首次提出了一种需要 95 步乘法的方案。

在这篇文章中,作者简单展示了这两个矩阵乘法的方案,不久后将发表正式论文,更详细地介绍求解算法的搜索技术。

4 × 4 矩阵的新方案共包含 47 次乘法,如下:

人类反超 AI:DeepMind 用 AI 打破矩阵乘法计算速度 50 年记录一周后,数学家再次刷新

人类反超 AI:DeepMind 用 AI 打破矩阵乘法计算速度 50 年记录一周后,数学家再次刷新

5×5 矩阵(n=5)的 95 步乘法方案如下:

人类反超 AI:DeepMind 用 AI 打破矩阵乘法计算速度 50 年记录一周后,数学家再次刷新

人类反超 AI:DeepMind 用 AI 打破矩阵乘法计算速度 50 年记录一周后,数学家再次刷新人类反超 AI:DeepMind 用 AI 打破矩阵乘法计算速度 50 年记录一周后,数学家再次刷新人类反超 AI:DeepMind 用 AI 打破矩阵乘法计算速度 50 年记录一周后,数学家再次刷新

考虑到 GPU 每天要进行万亿次矩阵计算,所以从 98 步到 96 步以及从 96 步到 95 步这样看起来很小的增量改进,实际上能大大提升计算效率,可以让 AI 应用程序在现有硬件上运行得更快。
作者介绍:
人类反超 AI:DeepMind 用 AI 打破矩阵乘法计算速度 50 年记录一周后,数学家再次刷新
Manuel Kauers,林茨约翰内斯开普勒大学的代数教授,该大学代数研究所的负责人。其研究兴趣是计算机代数、符号求和和积分、特殊函数恒等式等。
人类反超 AI:DeepMind 用 AI 打破矩阵乘法计算速度 50 年记录一周后,数学家再次刷新
Jakob Moosbauer,林茨约翰内斯开普勒大学代数研究所博士生。

本站部分文章来自互联网,文章版权归原作者所有。如有疑问请联系QQ:362580117!

相关文章

安森美第四季度业绩超预期,宣布30亿美元股票回购计划

安森美第四季度业绩超预期,宣布30亿美元股票回购计划

   实现破纪录的年收入、毛利率和自由现金流 2023年2月7日—安森美(onsemi,美国纳斯达克股票代号:ON)公布其2022年第4季...

NBA在鲸探发行首个可变数字藏品

NBA在鲸探发行首个可变数字藏品

4月7日,记者获悉,蚂蚁集团旗下鲸探App上架首个可变化数字藏品“NBA季后赛球场盲盒”。该款藏品形态可基于NBA赛事结果变化升级,用户还可根...

从见我“所见”,到见我“未见”,360EDR「一种可能解」

从见我“所见”,到见我“未见”,360EDR「一种可能解」

一直以来,海湾战争被认为是信息化战争开始的标志,美军曾在分析总结海湾战争获胜原因时认为“战争中最致命的武器不是导弹和战斗机,也不是战舰和坦克...

首批嘉宾揭晓!第二届中国生物计算大会有何不同?

首批嘉宾揭晓!第二届中国生物计算大会有何不同?

2021年,首届中国生物计算大会围绕“IT&BT”融合主线,在业内首创以“生物计算”为主题的行业交流平台,邀请到施一公、鄂维南、董晨、谭蔚泓...

中美AI竞赛,中国在人工智能领域打败美国了吗?

中美AI竞赛,中国在人工智能领域打败美国了吗?

华为与美国第一大移动通信网络运营商就双方电信专利许可费争议的私下调解,是与人工智能紧密相关的领域,都离不开芯片。华为被特朗普断供芯片...

腾讯Q1坚实增长营收同比增11% 三大主业重回增长轨道

2023年一季度,数实经济、广告和游戏三大核心业务集体发力下,腾讯重回增长曲线。腾讯控股(00700.HK)5月17日发布的一季报显示,营业收...

发表评论    

◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。