认知智能是一种融合的状态,分析神经符号认知推理方面的研究工作!
今天和大家分享神经符号认知推理方面的研究工作。人工智能(AI)已经历了第一代符号智能,第二代感知智能以及当前的认知智能。认知智能是一种融合的状态,强调表示学习与复杂知识推理的有机结合是人工智能进步的阶梯。
实际上,在自然语言处理(NLP)领域,预训练模型规模以每年约10倍的速度增长, 模型的通用智能水平显著增强。如上图,无论是计算的复杂度、参数以及训练时间,随着时间的推移,都有跨越性的发展,也促使模型性能大幅度提升。
同时,预训练语言模型还有很大的发展空间。例如询问GPT-3:烤箱和铅笔哪个更重?脚有几只眼睛?等问题,它的回答的结果差强人意。根本原因是缺少对知识的推理的能力,以及对推理结果的可解释性。
如何解决?我认为需要开发新的计算范式,即将基于感知的深度学习和基于认知的符号计算,进行融合。
传统基于符号的表示,例如在NLP领域,对于句子的处理是分词,文本中有1万个词就对应1万维。
现在分布式的表示方法是基于神经网络,需要学习出每个词的向量,此向量维度不高,也不会那么稀疏,它是低维稠密的实数值向量,很容易捕获文本的语义信息。
利用符号系统和利用上下文表示的系统有什么区别?首先对于词汇的理解,一定离不开上下文的语义的理解。例如:小明离开星巴克和乔布斯离开苹果公司,同样是离开一词,前者可能表示消费完了,离开某个商店,后者可能表示辞职。因此,两种语义是截然不同的。
传统的NLP任务从语料中提取特征,利用统计关系学习建模语义结构,属于符号系统处理方法。给定若干个任务,例如共旨消解、语义角色标注、依存分析或者NER等等任务,传统方法是手工提取一些特征,然后把特征输入到一些统计模型当中,然后得出分类结果、预测结果。
传统的 NLP的处理方式,提取特征可以认为是符号系统,即手工提取的特征本身就可以用来解释最后的预测结果,这是典型的可解释的方式。
基于神经网络的分布式的语义表示,在处理各种NLP任务时,“省略”了特征提取步骤,有几个特点:1. 单词用稠密的低维向量表示;2.上下文语义表示是单词语义表示的组合;3.表示向量与组合方式需要在大量的数据上进行训练;4.能够得到词的任务特异表示。
虽然运用神经网络能够得到远超以前的性能,但也有“需要大量训练数据”、“可解释性差”、“推理基于表面特征”等缺点。
神经方法和符号方法各有哪些优缺点?符号AI对于规则、知识,能够可程序化,可以用编程的方式直接把规则编写到程序当中,然后可以进行精确、严格的匹配、推理,得到的结果也是符合规则的,因此解释性强。缺点是构造成本太高,覆盖率低,稳定性也不太够。
神经方法的优点是表示能力非常强,任务的适应性很强,无论生成任务,还是分类任务,亦或回归任务都能“拿下”。缺点是学习最简单的模式,距离人的智慧还有很大的距离,以及一直被诟病的黑盒、不可解释性等等。
显然,如果有方法将神经与符号相融合就能优势互补。目前,有三种方法可供参考:
1.神经网络方法执行符号推理任务,神经网络在此过程当中可能帮助我们把词进行泛化。
2. 符号知识注入神经网络。进行损失函数设计,或者进行一些正则化的约束,或者进行数据增广等操作。
3. 神经网络与符号系统相融合。即不以符号为主,也不以神经为主,而是进行有机融合。
在NLP处理领域,如果想获得以“类人”方式学习和思考的机器,需要在语义合成、推理、常识学习,学会学习等四个方面努力。NLP中的推理是指文本推理能够推动另外三个任务不断的进步。
文本推理是指给定文本形式的前提(Premise)与前提相关的某一假设(Hypothesis),建模文本语义与文本结构,以判断前提与假设之间的关系。具体的例子如下图所示:
文本推理有三个典型的任务,文本蕴含、因果推理以及故事结尾预测。结合认知的文本推理,其实来源于认知科学当中的双过程的理论。
双过程理论是指人的思考和学习是有两个系统:直觉系统和逻辑系统。直觉系统帮助我们进行一些直觉的无思决策,快速回答问题;逻辑系统要调用大脑当中存储的知识进行逻辑的推理。
下面介绍实现刚才提到的三种不同认知推理任务的方法。
符号推理的任务有很多,自动定理证明、多项选择问答、逻辑规则归纳。由于时间有限,主要介绍多项选择问答任务。
在去年的EMNLP 2021一篇论文中,我们采用自然逻辑,帮助完成多项式选择的问答任务。
自然逻辑是一种语义单调性的逻辑系统,它主要是定义了7种单词之间的语义关系,包括等价、前向蕴含、反向蕴含、前向蕴含、反义、并列、覆盖、独立等等。然后我们要在遵循自然逻辑的前提下,在文本上进行推理,例如把句子进行增删改操作,然后保持语义的不变性,进行替换。
例如:
给定句子:所有的动物需要水
自然逻辑:动物 ⊒ (反向蕴含) 狗
替换操作后:所有的动物需要水 ⊑ 所有的狗需要水
推理中的换词对NLP中的多项选择问答任务非常有必要。例如上图中的任务形式:给定问题:啮齿动物吃植物?知识库当中有一条知识是:松鼠吃松子。
第一步需要进行单词的替换,将啮齿动物替换成仓鼠,然后把植物替换成果实,或者把植物可以替换成庄稼。
接下来不断替换,把植物替换成谷物,把果实替换成坚果,把啮齿动物替换成田鼠,经过一步一步的的替换,最终替换到了知识库当中的某一条知识。因此,基于自然逻辑进行多项选择问答这条路径就是可解释的。其实,不仅是可以替换,也可以增加词、删除词、修改词。
问题在于是基于语义词典进行词的替换,而语义词典是非常有限的。再者没有考虑上下文的语义关系。
引入神经网络的方法,可以将词的替换直接进行神经化。具体过程可以分为4步:
1. 利用预训练语言模型生成候选单词
2. 判断原单词和候选单词之间的语义关系
3. 根据上下文的单调性将词级别的语义关系映射到句子级别
4. 保留满足恒等和反向蕴含关系的候选句
符号知识注入神经网络的方式有很多,可以利用逻辑规则约束神经网络的模型;可以利用基于逻辑规则进行数据增强的任务。
例如数据增强,给定三元组 B的首都是A(A,首都,B),可以扩展出A位于B。具体一些,知识库总已经有: (北京,首都,中国),则基于该规则可以补充额外的三元组(北京,位于,中国)。
如何利用逻辑规则,约束神经模型?上图是事件时间常识知识预测任务,其中预测为对应的时间单元:给定事件起床,推测频率、持续时间以及典型发生时间。
这些事件的常识知识有什么用?可以把事件的常识知识注入到预训练语言模型当中,让模型对事件时间的常识知识能够掌握,会让模型在进行时间相关的推理的工作中更加高效。
存在的问题在于,从文本中无监督抽取的时间常识可能存在报告偏差(Reporting Bias)。例如常见的情况的在文本中并未显式提及:自然文本中几乎不会有“睡醒之后,我一般要花几分钟的时间起床”等类似的表达! 在文本表达中会对非寻常现象加以强调:我每天都得花一个小时才能起床!。
如何解决?利用不同维度间的时间常识知识之间的约束关系,减缓报告误差。对于“我是在妈妈准备早餐期间起床的”,利用事件间时序关系可以得出:起床的持续时间短于准备早餐 ;“自己在家准备早餐,十分钟就可以搞定” 可以得出:准备早餐的持续时间大概约为10分钟。
下表详细总结了类似于上述所有的可能的互补关系:
此规则怎样利用?我们设计了基于软逻辑规则的时间的常识预测。给定输入:我是在妈妈
将概率软逻辑规则放到神经网络模型当中,将其制作成损失函数。这一步是在交叉熵损失函数的基础上,添加了概率软逻辑的约束损失,使得模型在做的时间推理的过程当中,既考虑概率软逻辑的规则,同时考虑对于语义理解之后的的推理结果。
融合神经和符号的推理系统,在进行数值运算,因果逻辑推理,一阶谓词逻辑规则等方面具有优势。它可以利用神经网络模块,显式建模符号规则。
传统的因果推理模型多数以黑盒方式,直接从标注的因果事件对中学习因果知识。因此可能利用部分与标签存在相关关系的统计特征做出判断,致推理结果的不稳定,不可靠,不可解释。
如何还原背后的因果决策机制?我们提出引入中间证据事件,还原背后的因果逻辑链条。这种因果逻辑链条提供了更强的可解释性。在ACL 2021上,我们的工作ExCAR: 事理图谱知识增强的因果推理框架,能够从预先构建的事理图谱中获取中间证据事件。
具体而言是使用条件马尔可夫神经逻辑网络(CMNLN),其中逻辑网络具有较强的可解释性与可靠性。神经逻辑网络是指利用神经网络表示规则,并赋予每个因果规则以权重(因果强度),以应对规则集合中可能存在的噪音与统计关系的复杂性。条件马尔可夫还能支持因果叠加效应,即对于同一规则,不同的前件可能对因果强度带来不同的影响。基本逻辑是:证据事件→逻辑规则→因果逻辑图。
下面从人机交互的角度,思考机器学习。当前的机器学习过程:极度依赖静态的标注数据集。例如标签蕴含的信息有限,这导致学习效率低下、对于复杂任务,标注尤为昂贵、数据过时导致模型无法使用。
机器向人的学习远远不只是说去学标注的数据,可以学习的种类非常多样,例如点击用户的行为数据,以及用户的解释信息。实际上用户的解释的信息对于机器学习而言是非常重要的。
如上图的例子,小明根据ab/b=a,推导出SinX/n=six。老师则认为这是不对的,因为Sin是整体,是三角函数。
因此,基于上述观察,我们在ACL 2022会议论文中提出,不仅进行因果推理的任务,还需要给出相应的解释。不只是针对某因果对解释,可以是概念性的解释。
例如将铁块加入盐酸中,导致铁块被溶解。需要生成概念性的解释酸具有腐蚀性,显然这不只是因果对的解释。
当前的因果推理系统仍缺乏此类常识。例如,现有的因果推理数据集只提供因果对及其标签,缺少对因果关系原理层面的解释。而人类能够同时运用具体的因果知识,以及对于因果机制的深入理解以高效、可靠地推理出因果关系。因此,未来认知推理,它一定需要和脑科学进行结合。
本站部分文章来自互联网,文章版权归原作者所有。如有疑问请联系QQ:362580117!