AI技术解析-从浅层到深层学习

sxkk20081年前知识分享85

AI技术解析-从浅层到深层学习,AI技术,人工智能,AI机器人

  人工智能(AI)作为一种新兴的科技领域,已经成为了当今社会发展的热点话题。AI技术可以看作是模拟人类智能的技术,不仅包括了语音识别、自然语言处理、机器视觉等应用,还有神经网络、深度学习等底层技术。

  在AI技术领域,最热门的技术应该就是深度学习了。深度学习的本质是一种复杂的神经网络结构,在这个结构中,包含了数十、甚至数百万的参数,这些参数可以控制网络的结构和功能。通过对海量数据的训练,这些参数最终可以被优化,使得网络可以做出比人类更准确的预测和判断。

  但是深度学习并不是唯一的AI技术,浅层学习同样具有重要的意义。浅层学习包括了支持向量机、决策树等传统的分类算法,在很多实际应用中,这些算法同样可以表现出出色的性能。与深度学习相比,浅层学习具有一些优点,例如训练速度更快、对数据要求更低等。

  为了更好地理解这些技术,让我们先来看看机器学习的三个基本要素:数据、模型和算法。

  数据是机器学习的基石,没有数据就无法进行训练和预测。对于不同的任务,需要选择不同的数据来源,例如语音识别需要语音数据,图像识别需要图像数据等。在获得数据后,需要对数据进行清洗和预处理,将数据转换成模型可以接受的形式。在这个过程中,需要处理缺失值、异常值等问题,同时需要进行特征工程,将原始数据转换成可用的特征向量。

  模型是机器学习的另一个关键要素。模型可以看作一个黑箱子,将输入数据转换成输出数据。在机器学习的过程中,需要选择适合任务的模型,例如分类、回归等模型。在选择模型之后,需要对模型进行训练,调整模型的参数,使得模型可以更好地拟合训练数据。

  算法是机器学习的核心,决定了模型的训练方式和效果。在机器学习领域,有很多经典的算法,例如朴素贝叶斯、支持向量机、深度神经网络等。每个算法都有自己的优缺点,需要根据任务的要求选择合适的算法。

  对于初学者来说,机器学习可以被分为两个主要的分支:监督学习和无监督学习。

  在监督学习中,训练样本的标签已知,目标是通过样本和标签建立一个模型,用这个模型来预测未知样本的标签。常见的监督学习包括分类和回归。分类的目标是预测样本的分类标签,例如垃圾邮件分类、图像识别等;回归的目标是预测样本的数值标签,例如股票价格预测、房价预测等。

  在无监督学习中,训练样本的标签未知,目标是通过样本的内部结构或其他信息发现数据的潜在规律和关系。常见的无监督学习包括聚类和降维。聚类的目标是将样本分成若干个组,每组内的样本是相似的,不同组之间的样本是不同的。降维的目标是将高维数据转换成低维数据,保留原始数据的结构和特征。

  最后,回到我们之前提到的深度学习和浅层学习。两者各有优缺点,需要根据任务的要求和数据的特点选择合适的模型和算法。在选择模型和算法之前,需要充分了解任务和数据的性质,确定任务的类型和要求,选择适合的数据集进行训练和测试。

  总之,随着AI技术的不断发展和应用,机器学习作为AI技术的核心,将在各个领域发挥越来越重要的作用。了解机器学习的基本要素和技术原理,可以更好地应用和推广这些技术,创造更多的价值和效益。


相关文章

我用 nodejs 爬了一万多张小姐姐壁纸

前言哈喽,大家好,我是Ai知识分享,为什么要下载这么多图片呢? 前几天使用 uniapp + uniCloud 免费部署了一个壁纸小程序,那么接下来就需要一些资源,给小程序填充内容。爬取图片首先初始化...

智能化生活方式下的智能家居

智能化生活方式下的智能家居

   现在,智能家居设备已经渗透到了我们生活的各个方面。从智能灯泡到智能锁,再到智能音响和智能家电,智能家居的形态越来越丰富。智能家居的出现大大方便了我们的生活,也提高了我们...

AI技术会计:探索会计行业的新趋势

AI技术会计:探索会计行业的新趋势

  近年来,随着人工智能技术的迅速发展,越来越多的企业开始应用AI技术来提高效率并优化业务流程。会计行业在这一趋势下亦不例外,AI技术会计作为新兴领域,正在逐渐应用于会计业务...

AI检测:开启新媒体时代的智能呼唤

AI检测:开启新媒体时代的智能呼唤

  AI(人工智能)技术的不断发展和普及,已经渗透到各行各业中。其中,AI检测作为新兴应用领域之一,正在改变我们的生活方式和工作方式。借助AI检测技术,我们能够更加高效准确地...

AI识图:让图像智能化改变我们的生活

AI识图:让图像智能化改变我们的生活

  在当今数字化时代,人工智能(Artificial Intelligence,简称AI)技术正不断演进和应用于各个领域。其中,AI识图技术以其强大的图像分析和识别能力成...

我们使用相同步骤,建立标签表,并且添加数据到表中。

建立表关联

题目表和标签表是多对一的关系,一个标签下有多道题目,一个题目只有一个标签

Notion 建立表关联

在题目表添加属性tag,选择 Relation,让后选择“标签”表

Notion 建立表关联

这样题目表和标签表就建立了关系

创建 Notion 集成

在使用 Notion API 之前,我们需要创建一个 Notion 的应用集成,获取 API Key。 打开 https://www.notion.so/my-integrations,打开 Notion 集成页面,登录自己的账号,点击 New integration 创建一个新的应用:

创建 Notion 集成

名称可以自己起,上传一个 LOGO,然后关联一个 Notion 的工作空间:

创建 Notion 集成,填写信息

点击提交,这个应用就创建好了,在跳转的新页面里,把Internal Integration Token复制下来,不要泄露,否则拿到这个 key 的人都能操作你的笔记啦。

复制 Notion Token

使用 Notion 数据库进行 Next.js 应用全栈开发

文章为稀土掘金技术社区首发签约文章,14 天内禁止转载,14 天后未获授权禁止转载,侵权必究!前言在上一篇中,我们使用了 strapi 和 Next.js 开发了一个简易微博,但是我没有部署上线,因为...

发表评论    

◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。