AI技术解析-从浅层到深层学习

sxkk20082年前知识分享194

AI技术解析-从浅层到深层学习,AI技术,人工智能,AI机器人

  人工智能(AI)作为一种新兴的科技领域,已经成为了当今社会发展的热点话题。AI技术可以看作是模拟人类智能的技术,不仅包括了语音识别、自然语言处理、机器视觉等应用,还有神经网络、深度学习等底层技术。

  在AI技术领域,最热门的技术应该就是深度学习了。深度学习的本质是一种复杂的神经网络结构,在这个结构中,包含了数十、甚至数百万的参数,这些参数可以控制网络的结构和功能。通过对海量数据的训练,这些参数最终可以被优化,使得网络可以做出比人类更准确的预测和判断。

  但是深度学习并不是唯一的AI技术,浅层学习同样具有重要的意义。浅层学习包括了支持向量机、决策树等传统的分类算法,在很多实际应用中,这些算法同样可以表现出出色的性能。与深度学习相比,浅层学习具有一些优点,例如训练速度更快、对数据要求更低等。

  为了更好地理解这些技术,让我们先来看看机器学习的三个基本要素:数据、模型和算法。

  数据是机器学习的基石,没有数据就无法进行训练和预测。对于不同的任务,需要选择不同的数据来源,例如语音识别需要语音数据,图像识别需要图像数据等。在获得数据后,需要对数据进行清洗和预处理,将数据转换成模型可以接受的形式。在这个过程中,需要处理缺失值、异常值等问题,同时需要进行特征工程,将原始数据转换成可用的特征向量。

  模型是机器学习的另一个关键要素。模型可以看作一个黑箱子,将输入数据转换成输出数据。在机器学习的过程中,需要选择适合任务的模型,例如分类、回归等模型。在选择模型之后,需要对模型进行训练,调整模型的参数,使得模型可以更好地拟合训练数据。

  算法是机器学习的核心,决定了模型的训练方式和效果。在机器学习领域,有很多经典的算法,例如朴素贝叶斯、支持向量机、深度神经网络等。每个算法都有自己的优缺点,需要根据任务的要求选择合适的算法。

  对于初学者来说,机器学习可以被分为两个主要的分支:监督学习和无监督学习。

  在监督学习中,训练样本的标签已知,目标是通过样本和标签建立一个模型,用这个模型来预测未知样本的标签。常见的监督学习包括分类和回归。分类的目标是预测样本的分类标签,例如垃圾邮件分类、图像识别等;回归的目标是预测样本的数值标签,例如股票价格预测、房价预测等。

  在无监督学习中,训练样本的标签未知,目标是通过样本的内部结构或其他信息发现数据的潜在规律和关系。常见的无监督学习包括聚类和降维。聚类的目标是将样本分成若干个组,每组内的样本是相似的,不同组之间的样本是不同的。降维的目标是将高维数据转换成低维数据,保留原始数据的结构和特征。

  最后,回到我们之前提到的深度学习和浅层学习。两者各有优缺点,需要根据任务的要求和数据的特点选择合适的模型和算法。在选择模型和算法之前,需要充分了解任务和数据的性质,确定任务的类型和要求,选择适合的数据集进行训练和测试。

  总之,随着AI技术的不断发展和应用,机器学习作为AI技术的核心,将在各个领域发挥越来越重要的作用。了解机器学习的基本要素和技术原理,可以更好地应用和推广这些技术,创造更多的价值和效益。


相关文章

AI人工智能网站的重要性及应用领域:连接世界的知识和信息平台

AI人工智能网站的重要性及应用领域:连接世界的知识和信息平台

  随着科技的不断发展,人工智能(AI)正逐渐渗透到我们生活的方方面面。AI技术的普及使得各类AI人工智能网站成为了人们获取信息、进行交流和实现自我提升的重要平台。在这篇文章...

简单介绍一下自己

我是一名 90 后,12 年毕业,工作 9 年,发过传单,做过运营,也把自己当成产品经理。目前是一名小厂前端工程师,日常负责公司 2B 产品开发迭代交付,还有一些公司内部组件、脚手架维护等。这一年很少加班,调休全靠年假了 😊 。

我的 2021

完成的

除了完成开发工作之外,还完成了:

掘金后台统计

  1. 在掘金发布 12 篇文章

  2. 【全栈】第三次重构我的个人博客

  3. 【全栈】模仿在线流程图  processon.com,目前已经下线,掘金实现文章

  4. 【全栈】实现一个简易版 react 低代码平台 https://low-code.runjs.cool/, 目前只实现了视图层,后面的逻辑有些复杂,没有继续下去。

  5. https://dev.to/ 发布 1 篇

9 年小厂老前端的年终总结

前言时光飞逝,岁月如梭,转眼来到 2021 年底,这一年少了些理性,多了点感性,少了些自由,多了一份责任,这一年视乎没做什么事情,但又过得非常充实,最欣慰的是回家有个人等待着我的拥抱,最快乐的是耳边多...

人工智能时代的启幕

人工智能时代的启幕

  人工智能领域的最大挑战,是让AI系统自主实现复杂决策以及学习自我改进的能力。随着技术的不断演进,AI技术奇点的到来,意味着人工智能规模将加速扩大,其智能将会达到一种不可逆...

AI技术控:如何应对人工智能的挑战及未来发展趋势

AI技术控:如何应对人工智能的挑战及未来发展趋势

  人工智能(AI)技术近年来快速发展,对各行各业产生了重大影响。然而,随着AI技术的迅猛发展,人们对其未来的发展趋势、产业革命的规模及对劳动力市场的影响仍存在很多疑虑和担忧...

私有链:重新定义区块链的未来

私有链:重新定义区块链的未来

  区块链是一种去中心化的技术,被广泛应用于数字货币领域。然而,公有链的限制与问题也逐渐浮出水面。为了解决公有链的困境,私有链逐渐崭露头角,并以其独特的特点和潜力吸引了越来越...

盘点掘金 2021 高赞 Vue 文章

vue 中 Axios 的封装和 API 接口的管理作者: 愣锤点赞 4195收藏 4896阅读 200697分类 前端Vue 开发必须知道的 36 个技巧【近 1W 字】作者: 火狼 1点赞 415...

发表评论    

◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。